metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

μ -Fumarato- $\kappa^4 O, O'; O'', O'''$ -bis[aqua(2,9dimethyl-1,10-phenanthroline- $\kappa^2 N, N$)-(nitrato- $\kappa^2 O, O'$)manganese(II)]

Lin Li,^a Hui Zhang,^b Mei-Ling Zhang^b and Sai Bi^b*

^aCollege of Chemistry and Chemical Engineering, Guangxi University, 530004 Nanning, Guangxi, People's Republic of China, and ^bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China Correspondence e-mail: gustchemistry@126.com

Received 12 November 2007; accepted 14 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.043; wR factor = 0.134; data-to-parameter ratio = 14.2.

In the centrosymmetric title compound, $[Mn_2(C_4H_2O_4)-(NO_3)_2(C_{14}H_{12}N_2)_2(H_2O)_2]$, each Mn atom is six-coordinate in a distorted octahedral geometry. Molecules form stacks by $\pi-\pi$ interactions (centroid–centroid distances of 3.826, 3.708 and 3.719 Å). The water molecules act as donors to form O– H···O hydrogen bonds. Moreover, the molecules are linked into chains along the *a* axis by C–H···O intermolecular hydrogen bonds.

Related literature

For details of the DNA electrochemical biosensors of metalphenanthroline complexes, see: Wang *et al.* (1996). For bondlength data, see: Allen *et al.* (1987).

Experimental

Crystal data [Mn₂(C₄H₂O₄)(NO₃)₂(C₁₄H₁₂N₂)₂-(H₂O)₂]

 $M_r = 800.50$ Monoclinic, $P2_1/c$

a = 12.034 (2) A	
b = 9.1824 (16) Å	
c = 16.416 (2) Å	
$\beta = 113.532 \ (10)^{\circ}$	
V = 1663.1 (4) Å ³	

Data collection

Siemens SMART 1000 CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.723, T_{\rm max} = 0.852$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	230 parameters
$wR(F^2) = 0.134$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.77 \ {\rm e} \ {\rm \AA}^{-3}$
3266 reflections	$\Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$

Z = 2

Mo $K\alpha$ radiation

8963 measured reflections

3266 independent reflections 2951 reflections with $I > 2\sigma(I)$

 $\mu = 0.83 \text{ mm}^{-1}$

T = 293 (2) K $0.42 \times 0.33 \times 0.20 \text{ mm}$

 $R_{\rm int} = 0.013$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W - H1W1 \cdots O2^{i}$	0.82	2.23	2.978 (4)	151
$O1W - H2W1 \cdots O4^{ii}$	0.82	1.87	2.677 (3)	170
$C6-H6A\cdots O4^{iii}$	0.93	2.57	3.353 (4)	142
$C9-H9A\cdotsO1^{iv}$	0.93	2.56	3.439 (5)	157
	1 1		1	

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 1, -y, -z + 1; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997a); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997a); molecular graphics: *SHELXTL* (Sheldrick, 1997b); software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

This project was supported by the Natural Science Foundation of Shandong Province (grant Nos. Z2006B01 and Y2006B07).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2488).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M. & Dontha, N. (1996). Anal. Chem. 68, 2629–2634.

Acta Cryst. (2007). E63, m3096 [doi:10.1107/S1600536807059090]

μ-Fumarato- $\kappa^4 O, O'; O'', O'''$ -bis[aqua(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N$)(nitrato- $\kappa^2 O, O'$)manganese(II)]

L. Li, H. Zhang, M.-L. Zhang and S. Bi

Comment

Metal-phenanthroline complexes are good indicators for hydridization detection in DNA electrochemical biosensors (Wang *et al.*, 1996). In our search for new indicators, the title complex was synthesized and its structure is presented here.

The binuclear manganese complex in (I) possesses a crystallographically imposed centre of symmetry (Fig. 1). Each Mn^{II} atom is six-coordinated by two N atoms from one 9,10-dimethyl-phennathroline ligand, one O atoms from water, one O atom from fumaric acid, and two O atom from nitrate anion in a distorted octahedral environment. The axial position is occupied by water molecule O atom and one N atom from 9,10-dimethyl-phennathroline ligand, with an O1W—Mn1—N1 bond angle of 167.68 (1)°.

In the crystal structure, the short interplanar distances between the phenanthroline moieties suggest strong $\pi \cdots \pi$ interactions. The distances between benzene rings are $Cg1\cdots Cg2^{iii} = 3.826$, $Cg1\cdots Cg3^{iii} = 3.708$ and $Cg3\cdots Cg3^{iii} = 3.719$ Å, where Cg1, Cg2 and Cg3 denote the centroids of N1/C2—C5/C13, N2/C8—C12 and C5—C8/C12/C13 rings, respectively, which contribure to the crystal packing [symmetry code: (i) -x + 1, -y, -z + 1]. The water molecules act as donors to form O—H…O hydrogen bonds (Table 2). Moreover, the molecules are linked into chains along the *a* axis by C6—H6A…O4 and C9—H9A…O1 intermolecular hydrogen bonds.

Experimental

To a solution of 2,9-dimethyl-1,10-phenanthroline (0.21 g, 1 mmol) and fumaric acid (0.058 g, 0.5 mmol) in ethanol (10 ml) was added a solution of $Mn(Ac)_2$ (0.11 g, 1 mmol) in distilled water (10 ml). The mixture was stirred and then refluxed for 2 h. The hot solution was then filtered into another flask containing ethanol-water. Brown crystals appeared over a period of one week by slow evaporation at room temperature.

Refinement

All H atoms were located in difference Fourier map. Water H atoms were refined with O1W—H1W1 and O1W—H2W1 distance restrains of 0.82 Å [1.5 $U_{eq}(O)$]. The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ and 1.5 $U_{eq}(methyl C)$ H atoms.

Figures

Fig. 1. The structure of the compound (I) showing 50% probability displacement ellipsoids and the atom numbering scheme. H atoms have been omitted for clarity.

Fig. 2. A packing diagram of (I), viewed down the b axis. Hydrogen bonds are indicated by dashed lines.

μ-Fumarato- $\kappa^4 O, O'; O'', O'''$ -bis[aqua(2,9- dimethyl-1,10-phenanthroline- $\kappa^2 N, N$)(nitrato- $\kappa^2 O, O'$)manganese(II)]

 $F_{000} = 820$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.2 - 26.0^{\circ}$

 $\mu = 0.83 \text{ mm}^{-1}$

T = 293 (2) K

Block, colourless

 $0.42 \times 0.33 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.587 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 5923 reflections

Crystal data

 $[Mn_{2}(C_{4}H_{2}O_{4})(NO_{3})_{2}(C_{14}H_{12}N_{2})_{2}(H_{2}O)_{2}]$ $M_{r} = 800.50$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 12.034 (2) Å b = 9.1824 (16) Å c = 16.416 (2) Å $\beta = 113.532$ (10)° V = 1663.1 (4) Å³ Z = 2

Data collection

Siemens SMART 1000 CCD area-detector diffractometer	3266 independent reflections
Radiation source: fine-focus sealed tube	2951 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.013$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\rm max} = 26.1^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.9^{\circ}$
ω scans	$h = -14 \rightarrow 13$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -10 \rightarrow 11$
$T_{\min} = 0.723, T_{\max} = 0.852$	$l = -20 \rightarrow 18$
8963 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.134$	$w = 1/[\sigma^2(F_o^2) + (0.0858P)^2 + 1.1575P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\text{max}} = 0.001$
3266 reflections	$\Delta \rho_{max} = 0.77 \text{ e } \text{\AA}^{-3}$
230 parameters	$\Delta \rho_{min} = -0.86 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.17583 (3)	0.18538 (4)	0.32962 (2)	0.03045 (16)
O2	0.1578 (2)	0.4355 (3)	0.31837 (15)	0.0611 (6)
C13	0.4425 (3)	0.1767 (3)	0.43220 (19)	0.0417 (6)
C17	0.0603 (2)	0.0233 (3)	0.40796 (17)	0.0428 (6)
N1	0.3457 (2)	0.2379 (3)	0.44183 (15)	0.0428 (5)
01	0.2395 (2)	0.3349 (2)	0.2384 (2)	0.0683 (7)
O3	0.0941 (2)	0.1538 (2)	0.41663 (15)	0.0567 (5)
N2	0.3019 (2)	0.0450 (2)	0.30670 (14)	0.0397 (5)
N3	0.2067 (2)	0.4487 (2)	0.26373 (17)	0.0484 (6)
O4	0.07726 (19)	-0.0591 (2)	0.35325 (14)	0.0544 (5)
C12	0.4195 (2)	0.0740 (3)	0.36088 (18)	0.0414 (6)
C18	0.0025 (2)	-0.0354 (3)	0.46628 (18)	0.0441 (6)
H18A	-0.0319	-0.1278	0.4539	0.066*
C2	0.3652 (3)	0.3286 (3)	0.5095 (2)	0.0511 (7)
C8	0.5185 (3)	0.0068 (3)	0.3506 (2)	0.0504 (7)
C7	0.6398 (3)	0.0422 (4)	0.4098 (3)	0.0644 (9)
H7A	0.7047	-0.0016	0.4023	0.077*
C9	0.4917 (3)	-0.0945 (4)	0.2813 (2)	0.0600 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H9A	0.5539	-0.1406	0.2713	0.072*
C5	0.5638 (3)	0.2069 (3)	0.4898 (2)	0.0528 (7)
C10	0.3740 (3)	-0.1249 (3)	0.2288 (2)	0.0565 (8)
H10A	0.3560	-0.1941	0.1839	0.068*
C3	0.4854 (3)	0.3626 (4)	0.5702 (2)	0.0635 (9)
H3A	0.4976	0.4256	0.6174	0.076*
C14	0.1502 (3)	-0.0849 (4)	0.1806 (2)	0.0568 (7)
H14A	0.0965	-0.0275	0.1979	0.085*
H14B	0.1336	-0.1864	0.1843	0.085*
H14C	0.1380	-0.0613	0.1207	0.085*
C4	0.5817 (3)	0.3042 (4)	0.5597 (2)	0.0633 (9)
H4A	0.6599	0.3284	0.5989	0.076*
C11	0.2793 (3)	-0.0527 (3)	0.24174 (18)	0.0442 (6)
C1	0.2607 (4)	0.3946 (4)	0.5233 (2)	0.0686 (9)
H1A	0.1862	0.3616	0.4776	0.103*
H1B	0.2652	0.4988	0.5210	0.103*
H1C	0.2634	0.3657	0.5803	0.103*
C6	0.6609 (3)	0.1381 (4)	0.4763 (2)	0.0626 (9)
H6A	0.7404	0.1597	0.5140	0.075*
O1W	0.0156 (2)	0.1824 (2)	0.21622 (17)	0.0578 (6)
H1W1	-0.0327	0.1265	0.2237	0.069*
H2W1	-0.0054	0.2661	0.1999	0.087*
O5	0.2199 (2)	0.5687 (3)	0.23736 (19)	0.0756 (7)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0309 (2)	0.0322 (2)	0.0326 (2)	-0.00011 (12)	0.01727 (17)	0.00015 (13)
O2	0.0537 (12)	0.0752 (16)	0.0575 (13)	-0.0015 (11)	0.0255 (10)	0.0064 (11)
C13	0.0423 (14)	0.0407 (14)	0.0415 (14)	-0.0010 (10)	0.0162 (11)	0.0109 (10)
C17	0.0358 (12)	0.0532 (15)	0.0381 (13)	-0.0041 (11)	0.0136 (10)	0.0003 (11)
N1	0.0481 (12)	0.0426 (12)	0.0398 (11)	-0.0047 (10)	0.0198 (9)	0.0004 (9)
01	0.0637 (15)	0.0486 (13)	0.102 (2)	0.0047 (10)	0.0423 (14)	-0.0012 (12)
O3	0.0667 (14)	0.0573 (12)	0.0567 (12)	-0.0170 (10)	0.0358 (11)	-0.0034 (10)
N2	0.0453 (12)	0.0376 (11)	0.0415 (11)	-0.0011 (9)	0.0228 (9)	0.0032 (9)
N3	0.0459 (12)	0.0379 (12)	0.0585 (14)	-0.0027 (9)	0.0178 (11)	0.0094 (10)
O4	0.0573 (12)	0.0651 (13)	0.0474 (11)	0.0009 (10)	0.0278 (9)	-0.0037 (10)
C12	0.0426 (13)	0.0400 (13)	0.0451 (13)	0.0035 (10)	0.0213 (11)	0.0132 (11)
C18	0.0422 (13)	0.0474 (15)	0.0442 (13)	-0.0074 (11)	0.0189 (11)	-0.0016 (11)
C2	0.0658 (19)	0.0458 (16)	0.0423 (15)	-0.0082 (13)	0.0223 (14)	-0.0016 (11)
C8	0.0516 (15)	0.0492 (15)	0.0602 (17)	0.0110 (12)	0.0327 (14)	0.0188 (13)
C7	0.0453 (16)	0.074 (2)	0.078 (2)	0.0169 (15)	0.0287 (15)	0.0304 (19)
C9	0.068 (2)	0.0586 (18)	0.070 (2)	0.0212 (15)	0.0448 (17)	0.0157 (16)
C5	0.0458 (15)	0.0536 (17)	0.0506 (16)	-0.0047 (13)	0.0104 (13)	0.0191 (13)
C10	0.080 (2)	0.0460 (16)	0.0567 (17)	0.0093 (15)	0.0415 (17)	0.0026 (14)
C3	0.079 (2)	0.0575 (18)	0.0435 (16)	-0.0178 (17)	0.0134 (15)	-0.0053 (14)
C14	0.0668 (19)	0.0561 (17)	0.0536 (17)	-0.0095 (15)	0.0304 (15)	-0.0129 (14)
C4	0.0570 (19)	0.064 (2)	0.0495 (18)	-0.0160 (15)	0.0014 (15)	0.0098 (14)

C11 C1	0.0577 (16) 0.084 (2)	0.0393 (13) 0.070 (2)	0.0441 (14)	-0.0016(12) -0.0124(18)	0.0293 (12) 0.0406 (19)	0.0020(11) - $0.0252(17)$
C6	0.0400(15)	0.071(2)	0.068(2)	0.0019(15)	0.0119(14)	0 0243 (18)
O1W	0.0517 (12)	0.0504(13)	0.0666(14)	-0.0075(9)	0.0186 (11)	0.0087 (9)
Geometric paran	neters (Å, °)					
Mn1—O3		2.053 (2)	C8—4	С9	1.40	04 (5)
Mn1—O1W		2.078 (2)	C8—	C7	1.43	30 (5)
Mn1—N2		2.136 (2)	C7—	C6	1.34	15 (6)
Mn1—N1		2.191 (2)	C7—1	H7A	0.93	300
Mn1—O2		2.307 (3)	С9—	C10	1.36	51 (5)
Mn1—O1		2.372 (3)	C9—1	H9A	0.93	300
O2—N3		1.260 (3)	C5—4	C4	1.40	01 (5)
C13—N1		1.358 (4)	C5—4	C6	1.42	22 (5)
C13—C5		1.415 (4)	C10-	-C11	1.40	06 (4)
C13—C12		1.441 (4)	C10-	-H10A	0.93	300
C17—O3		1.255 (4)	C3—4	C4	1.34	19 (6)
C17—O4		1.251 (3)	C3—1	H3A	0.93	300
C17—C18		1.491 (4)	C14-	-C11	1.50	05 (4)
N1—C2		1.333 (4)	C14-	-H14A	0.96	500
O1—N3		1.246 (3)	C14—	-H14B	0.96	500
N2-C11		1.336 (4)	C14-	-H14C	0.96	500
N2—C12		1.364 (3)	C4—]	H4A	0.93	300
N3—O5		1.217 (4)	C1—1	H1A	0.96	500
C12—C8		1.411 (4)	C1—1	H1B	0.96	500
C18—C18 ⁱ		1.306 (5)	C1—1	H1C	0.96	500
C18—H18A		0.9300	C6—]	H6A	0.93	300
C2—C3		1.425 (5)	O1W-	—H1W1	0.82	200
C2—C1		1.493 (5)	O1W-	—H2W1	0.81	99
O3—Mn1—O1W		95.18 (10)	С9—	C8—C12	117	.1 (3)
O3—Mn1—N2		127.51 (9)	С9—	С8—С7	122	.9 (3)
O1W—Mn1—N2		107.74 (9)	C12-	-C8-C7	120	.0 (3)
O3—Mn1—N1		89.52 (9)	C6—4	С7—С8	120	.8 (3)
O1W—Mn1—N1		167.68 (8)	C6—	С7—Н7А	119	.6
N2—Mn1—N1		77.92 (9)	C8—	С7—Н7А	119	.6
O3—Mn1—O2		98.08 (8)	C10–	-C9C8	119	.6 (3)
O1W—Mn1—O2		85.28 (8)	C10–	-С9—Н9А	120	.2
N2—Mn1—O2		129.58 (8)	C8—	С9—Н9А	120	.2
N1—Mn1—O2		82.78 (9)	C13–	-C5-C4	116	.9 (3)
O3—Mn1—O1		152.37 (9)	C13–	-C5—C6	120	.1 (3)
O1W-Mn1-O1		81.98 (9)	C4—	С5—С6	123	.0 (3)
N2—Mn1—O1		78.87 (8)	С9—	C10—C11	120	.6 (3)
N1—Mn1—O1		88.57 (9)	С9—	С10—Н10А	119	.7
O2—Mn1—O1		54.35 (8)	C11–	-C10—H10A	119	.7
N3—O2—Mn1		95.62 (18)	C4—	С3—С2	120	.5 (3)
N1—C13—C5		123.0 (3)	C4—	С3—НЗА	119	.8
N1—C13—C12		118.1 (2)	C2—	С3—НЗА	119	.8
C5—C13—C12		118.9 (3)	C11–	-C14—H14A	109	.5

O3—C17—O4	121.4 (3)	C11—C14—H14B	109.5
O3—C17—C18	119.0 (3)	H14A—C14—H14B	109.5
O4—C17—C18	119.6 (3)	C11—C14—H14C	109.5
C13—N1—C2	118.8 (3)	H14A—C14—H14C	109.5
C13—N1—Mn1	111.50 (18)	H14B—C14—H14C	109.5
C2-N1-Mn1	129.3 (2)	C3—C4—C5	119.9 (3)
N3-01-Mn1	92.88 (18)	С3—С4—Н4А	120.0
C17—O3—Mn1	106.22 (18)	С5—С4—Н4А	120.0
C11—N2—C12	118.6 (2)	N2—C11—C10	121.2 (3)
C11—N2—Mn1	127.84 (19)	N2—C11—C14	119.4 (2)
C12—N2—Mn1	113.10(17)	C10-C11-C14	119.4 (3)
05—N3—01	122.5 (3)	С2—С1—Н1А	109.5
05 - N3 - 02	120.3 (3)	C2—C1—H1B	109.5
01 - N3 - 02	117 1 (2)	H1A— $C1$ — $H1B$	109.5
$N_2 - C_{12} - C_{13}$	1180(2)	C2-C1-H1C	109.5
$N_2 - C_{12} - C_{8}$	122.9 (3)	H1A - C1 - H1C	109.5
$C_{13} - C_{12} - C_{8}$	1191(3)	H1B-C1-H1C	109.5
$C18^{i}$ $-C18$ $-C17$	123.8 (3)	C7—C6—C5	121.1 (3)
$C18^{i}$ — $C18$ — $H18A$	118.1	С7—С6—Н6А	119.4
C17—C18—H18A	118 1	С5—С6—Н6А	1194
N1 - C2 - C3	120.8 (3)	Mn1 - O1W - H1W1	109.5
N1—C2—C1	120.1 (3)	Mn1—O1W—H2W1	109.6
C3—C2—C1	119.1 (3)	H1W1—O1W—H2W1	119.4
Ω_3 —Mn1— Ω_2 —N3	-17889(17)	Mn1—02—N3—05	-1790(2)
$\Omega W = Mn1 = \Omega^2 = N3$	-84 32 (17)	Mn1	14(3)
N_{2} Mn1 Q_{2} N3	24 9 (2)	$C_{11} = N_2 = C_{12} = C_{13}$	-1783(2)
N1— $Mn1$ — $O2$ — $N3$	92.62 (17)	Mn1 - N2 - C12 - C13	8.5 (3)
$\Omega_1 - Mn_1 - \Omega_2 - N_3$	-0.82(16)	$C_{11} = N_2 = C_{12} = C_{12}$	0.9(4)
C5-C13-N1-C2	-1.4(4)	Mn1—N2—C12—C8	-172.3(2)
C12-C13-N1-C2	177 4 (2)	N1-C13-C12-N2	04(3)
C_{5} C_{13} N_{1} M_{n1}	177.5(2)	C_{5} C_{13} C_{12} N_{2}	179 2 (2)
C12-C13-N1-Mn1	-8.8 (3)	N1-C13-C12-C8	-178.8(2)
O3—Mn1—N1—C13	138.51 (18)	C5-C13-C12-C8	0.0 (4)
O1W—Mn1—N1—C13	-108.9 (4)	O3—C17—C18—C18 ⁱ	-8.6 (5)
N2—Mn1—N1—C13	9.86 (17)	O4—C17—C18—C18 ⁱ	169.5 (4)
O2—Mn1—N1—C13	-123.29 (18)	C13—N1—C2—C3	0.9 (4)
O1—Mn1—N1—C13	-69.06 (18)	Mn1—N1—C2—C3	-171.7 (2)
O3—Mn1—N1—C2	-48.5 (2)	C13—N1—C2—C1	-178.3 (3)
O1W—Mn1—N1—C2	64.2 (5)	Mn1—N1—C2—C1	9.1 (4)
N2—Mn1—N1—C2	-177.1 (3)	N2—C12—C8—C9	-0.4 (4)
O2—Mn1—N1—C2	49.7 (2)	C13—C12—C8—C9	178.8 (2)
O1—Mn1—N1—C2	104.0 (2)	N2—C12—C8—C7	-180.0(2)
O3—Mn1—O1—N3	4.9 (3)	C13—C12—C8—C7	-0.8 (4)
O1W—Mn1—O1—N3	90.76 (19)	C9—C8—C7—C6	-178.8 (3)
N2—Mn1—O1—N3	-159.3 (2)	C12—C8—C7—C6	0.7 (5)
N1—Mn1—O1—N3	-81.31 (19)	C12—C8—C9—C10	-0.9 (4)
O2—Mn1—O1—N3	0.82 (16)	C7—C8—C9—C10	178.6 (3)
O4—C17—O3—Mn1	-1.0 (3)	N1—C13—C5—C4	0.5 (4)

C18—C17—O3—Mn1	176.98 (19)	C12—C13—C5—C4	-178.2 (2)
O1W—Mn1—O3—C17	72.8 (2)	N1-C13-C5-C6	179.6 (3)
N2—Mn1—O3—C17	-44.2 (2)	C12—C13—C5—C6	0.8 (4)
N1—Mn1—O3—C17	-118.6 (2)	C8—C9—C10—C11	1.8 (5)
O2—Mn1—O3—C17	158.80 (19)	N1-C2-C3-C4	0.5 (5)
O1—Mn1—O3—C17	155.4 (2)	C1—C2—C3—C4	179.7 (3)
O3—Mn1—N2—C11	97.9 (2)	C2—C3—C4—C5	-1.3 (5)
O1W—Mn1—N2—C11	-13.5 (2)	C13—C5—C4—C3	0.8 (5)
N1—Mn1—N2—C11	177.8 (2)	C6—C5—C4—C3	-178.2 (3)
O2—Mn1—N2—C11	-112.3 (2)	C12-N2-C11-C10	0.0 (4)
O1—Mn1—N2—C11	-91.3 (2)	Mn1-N2-C11-C10	172.1 (2)
O3—Mn1—N2—C12	-89.66 (18)	C12-N2-C11-C14	-179.3 (2)
O1W—Mn1—N2—C12	158.93 (16)	Mn1-N2-C11-C14	-7.2 (4)
N1—Mn1—N2—C12	-9.73 (16)	C9-C10-C11-N2	-1.4 (4)
O2—Mn1—N2—C12	60.2 (2)	C9-C10-C11-C14	177.9 (3)
O1—Mn1—N2—C12	81.19 (17)	C8—C7—C6—C5	0.1 (5)
Mn1—O1—N3—O5	179.0 (3)	C13—C5—C6—C7	-0.9 (5)
Mn1—O1—N3—O2	-1.4 (3)	C4—C5—C6—C7	178.1 (3)
Symmetry codes: (i) $-x$, $-y$, $-z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1W1···O2 ⁱⁱ	0.82	2.23	2.978 (4)	151
O1W—H2W1···O4 ⁱⁱⁱ	0.82	1.87	2.677 (3)	170
C6—H6A···O4 ^{iv}	0.93	2.57	3.353 (4)	142
C9—H9A···O1 ^v	0.93	2.56	3.439 (5)	157

Symmetry codes: (ii) -x, y-1/2, -z+1/2; (iii) -x, y+1/2, -z+1/2; (iv) -x+1, -y, -z+1; (v) -x+1, y-1/2, -z+1/2.

Fig. 1

